Optical Coherence Tomography as a Tool for Detecting Retinal Nerve Fiber Layer Defects in Glaucoma Patients: A Cross-Sectional Study
DOI:
https://doi.org/10.63666/ejsmr.1694-9013.3.I.2025.69Keywords:
Optical Coherence Tomography, Retinal Nerve Fiber Layer, Glaucoma, Intraocular Pressure, Cup-to-Disc Ratio, Optic NeuropathyAbstract
Introduction: Optical Coherence Tomography (OCT) has emerged as a valuable tool in glaucoma diagnosis, particularly for assessing retinal nerve fiber layer (RNFL) thickness changes. It enables precise evaluation of glaucomatous optic neuropathy and provides critical insights into the association between RNFL thickness and disease progression. Additionally, OCT supports diagnosis, assessment, prediction, and research in glaucoma.
Materials and Methods: This cross-sectional study involved patients diagnosed with glaucoma. OCT scans were performed to measure RNFL thickness, and data on demographics, intraocular pressure (IOP), and cup-to-disc (CD) ratio were collected via questionnaires. The aim was to identify correlations between RNFL defects and clinical parameters.
Results: Glaucoma patients exhibited significantly thinner RNFL compared to healthy controls. A notable correlation was observed between elevated IOP and the severity of RNFL defects. These findings underscore OCT's efficacy in enhancing glaucoma diagnosis and facilitating early intervention. The study was conducted at an eye surgery clinic using the NIDEK RS 3000 OCT device for RNFL analysis. Measurements across four quadrants (superior, inferior, nasal, temporal) were obtained from 45 patients with primary open-angle glaucoma. RNFL thickness changes were detected in 39 patients (86.7%), with marked thinning in the nasal quadrant (80%), temporal quadrant (66.7%), superior quadrant (71.1%), and inferior quadrant (60%).
Conclusion: OCT serves as an effective indicator for detecting RNFL defects in glaucoma patients. This study highlights its clinical utility for early detection and intervention, aiding in vision preservation for at-risk individuals.
References
1. Servodidio, C. A., & Abramson, D. H. (1993). Acute and long-term effects of radiation therapy to the eye in children. Cancer Nursing, 16(5), 371–381.
2. Bergmanson, J. P. G. (2020). Clinical ocular anatomy and physiology.
3. Martin, R. (2018). Cornea and anterior eye assessment with slit-lamp biomicroscopy, specular microscopy, confocal microscopy, and ultrasound biomicroscopy. Indian Journal of Ophthalmology, 66(2), 195–201.
4. Holly, F. J. (1973). Formation and stability of the tear film. In F. J. Holly & M. A. Lemp (Eds.), The preocular tear film and dry eye syndromes (International Ophthalmology Clinics, Vol. 13, No. 1). Little, Brown.
5. Mann, I. (1964). The development of the human eye. Grune & Stratton.
6. Muron, A., & Pospisil, J. (2000). The human iris structure and its usages. Acta Universitatis Palackianae Olomucensis Physica, 39, 87–95.
7. Lowenfeld, I., & Newsome, D. (1971). Iris mechanics: I. Influence of pupil size on dynamics of pupillary movements. American Journal of Ophthalmology, 71(2), 347–362.
8. Bhat, S. P. (2003). Crystallins, genes and cataract. Progress in Drug Research, 60, 205–262.
9. Beckett, B. S. (1976). Biology: A modern introduction. Oxford University Press.
10. Campbell, N., & Reece, J. (2002). Biology (6th ed.). Benjamin Cummings.
11. Kolb, H. (1991). The neural organization of the human retina. In J. R. Heckenlively & G. B. Arden (Eds.), Principles and practice of clinical electrophysiology of vision. Mosby Year Book.
12. Sadun, A. A. (1998). Anatomy and physiology of the optic nerve. In N. R. Miller & N. J. Newman (Eds.), Walsh and Hoyt's clinical neuro-ophthalmology (5th ed., pp. 57–83). Williams & Wilkins.
13. Ameen, D. B., Bishop, M. E., & McMullen, T. (1998). A lattice model for computing the transmissivity of the cornea and sclera. Biophysical Journal, 75(5), 2520–2531.Senjam, S. S. (2020). Glaucoma blindness–A rapidly emerging non-communicable ocular disease in India: Addressing the issue with advocacy. Journal of Family Medicine and Primary Care, 9(5), 2200–2206. https://doi.org/10.4103/jfmpc.jfmpc_111_20
14. Petrov, S. Y., Sherstneva, L. V., & Vostruhin, S. V. (2015). Primary glaucoma etiology: current theories and researches. Ophthalmology Reports, 8(2), 47–56. https://doi.org/10.17816/OV2015247-56
15. Steinmetz, J. D., Bourne, R. R., Briant, P. S., Flaxman, S. R., Taylor, H. R., Jonas, J. B., Abdoli, A. A., Abrha, W. A., Abualhasan, A., Abu-Gharbieh, E. G., & Adal, T. G. (2021). Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. The Lancet Global Health, 9(2), e144–e160. https://doi.org/10.1016/s2214-109x(20)30489-7
16. Suri, F., Yazdani, S., & Elahi, E. (2015). Glaucoma in Iran and contributions of studies in Iran to the understanding of the etiology of glaucoma. Journal of Ophthalmic & Vision Research, 10(1), 68. https://doi.org/10.4103/2008-322x.150827
17. Albdour, M. Q., Vu, K. T., Markel, N. L., & Parikh, K. (2016). Family history of glaucoma and disease severity.Journal of the Royal Medical Services, 23(4), 36–40.
18. Boyd, K. (2023, December 19). What is glaucoma? Symptoms, cause, diagnosis, treatment. American Academy of Ophthalmology. Retrieved January 15, 2026, from https://www.aao.org/eye-health/diseases/what-is-glaucoma
19. Križaj, D. (2019, May 30). What is glaucoma? In H. Kolb, R. Nelson, E. Fernandez, & B. Jones (Eds.), Webvision: The organization of the retina and visual system. University of Utah Health Sciences Center. Retrieved January 15, 2026, from https://www.webvision.pitt.edu/book/part-xii-cell-biology-of-retinal-degenerations/what-is-glaucoma
20. McKinnon, S. J., Goldberg, L. D., Peeples, P., Walt, J. G., & Bramley, T. J. (2008). Current management of glaucoma and the need for complete therapy. The American Journal of Managed Care, 14(1 Suppl), S20–S27.
21. Butt, N. H., Ayub, M. H., & Ali, M. H. (2016). Challenges in the management of glaucoma in developing countries. Taiwan Journal of Ophthalmology, 6(3), 119–122. https://doi.org/10.1016/j.tjo.2016.01.004
22. Wagner, I. V., Stewart, M. W., & Dorairaj, S. K. (2022). Updates on the diagnosis and management of glaucoma. Mayo Clinic Proceedings: Innovations, Quality & Outcomes, 6(6), 618–635. https://doi.org/10.1016/j.mayocpiqo.2022.09.007
23. Gupta, N., & Yücel, Y. H. (2007). Glaucoma as a neurodegenerative disease. Current Opinion in Ophthalmology, 18(2), 110–114. https://doi.org/10.1097/ICU.0b013e3280895aea
24. Jutley, G., Luk, S. M., Dehabadi, M. H., & Cordeiro, M. F. (2017). Management of glaucoma as a neurodegenerative disease. Neurodegenerative Disease Management, 7(2), 157–172. https://doi.org/10.2217/nmt-2017-0004
25. Mohan, N., Chakrabarti, A., Nazm, N., Mehta, R., & Edward, D. P. (2022). Newer advances in medical management of glaucoma. Indian Journal of Ophthalmology, 70(6), 1920–1930. https://doi.org/10.4103/ijo.IJO_2239_21
26. Remis, L. L., & Epstein, D. L. (1984). Treatment of glaucoma. Annual Review of Medicine, 35, 195–205. https://doi.org/10.1146/annurev.me.35.020184.001211
27. Wang, Y. X., Panda-Jonas, S., & Jonas, J. B. (2021). Optic nerve head anatomy in myopia and glaucoma, including parapapillary zones alpha, beta, gamma and delta: Histology and clinical features. Progress in Retinal and Eye Research, 83, Article 100933. https://doi.org/10.1016/j.preteyeres.2020.100933
28. La Bruna, S., Rai, A., Mao, G., Kerr, J., Amin, H., Zemborain, Z. Z., Leshno, A., Tsamis, E., De Moraes, C. G., & Hood, D. C. (2022). The OCT RNFL probability map and artifacts resembling glaucomatous damage. Translational Vision Science & Technology, 11(3), Article 18. https://doi.org/10.1167/tvst.11.3.18
29. Moreno-Montañés, J., & Álvarez-Vidal, A. (2002). [Retinal nerve fiber layer thickness in glaucomatous eyes. A comparative study between OCT and visual field]. Archivos de la Sociedad Española de Oftalmología, 77(8), 435–441.
30. Ashraf, N. N., Siyal, N. A., & Ibrahim, M. (2021). Comparison of quadrantic retinal nerve fiber layer thickness between glaucoma patients and age matched controls. Pakistan Journal of Ophthalmology, 37(3). https://doi.org/10.36351/pjo.v37i3.1199
31. Mariottoni, E. B., Jammal, A. A., Urata, C. N., Berchuck, S. I., Thompson, A. C., Estrela, T., & Medeiros, F. A. (2020). Quantification of retinal nerve fibre layer thickness on optical coherence tomography with a deep learning segmentation-free approach. Scientific Reports, 10(1), Article 402. https://doi.org/10.1038/s41598-019-57196-y
32. Thomas, D., & Duguid, G. (2004). Optical coherence tomography—A review of the principles and contemporary uses in retinal investigation. Eye, 18(6), 561–570. https://doi.org/10.1038/sj.eye.6700729
33. Schwartz, D. M., Fingler, J., Kim, D. Y., Zawadzki, R. J., Morse, L. S., Park, S. S., Fraser, S. E., & Werner, J. S. (2014). Phase-variance optical coherence tomography: A technique for noninvasive angiography. Ophthalmology, 121(1), 180–187. https://doi.org/10.1016/j.ophtha.2013.09.002
34. Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory, K., Puliafito, C. A., & Fujimoto, J. G. (1991). Optical coherence tomography. Science, 254(5035), 1178–1181. https://doi.org/10.1126/science.1957169
35. Ul Ain, N., Shaikh, R. M., & Malik, T. G. (2025). Pattern of RNFL damage in early- and late-stage primary open-angle glaucoma using the disc damage likelihood scale and optical coherence tomography. Turkish Journal of Ophthalmology, 55(3), 127–131. https://doi.org/10.4274/tjo.galenos.2025.88834
36. Sunny, F., Chandran, P., Joy, L., & Raman, G. V. (2025). Ability of the optical coherence tomography parameters to identify retinal nerve fibre layer defect in Indian eyes with mild glaucoma. *AJO International, 2*(4), Article 100196. https://doi.org/10.1016/j.ajoint.2025.100196
37. Gregori, G., Knighton, R. W., Puliafito, C. A., Legarreta, J. E., Punjabi, O. S., & Lalwani, G. A. (2008). Macular thickness measurements in normal eyes using spectral domain optical coherence tomography. Ophthalmic Surgery, Lasers & Imaging, 39(4 Suppl), S43–S49. https://doi.org/10.3928/15428877-20080715-02
38. David, R. C. C., Moghimi, S., Ekici, E., Do, J. L., Hou, H., Proudfoot, J. A., Kamalipour, A., Nishida, T., Girkin, C. A., Liebmann, J. M., & Weinreb, R. N. (2021). Rates of retinal nerve fiber layer thinning in distinct glaucomatous optic disc phenotypes in early glaucoma. *American Journal of Ophthalmology, 229*, 8–17. https://doi.org/10.1016/j.ajo.2021.04.010
39. Bowd, C., Weinreb, R. N., Williams, J. M., & Zangwill, L. M. (2000). The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with optical coherence tomography. Archives of Ophthalmology, 118(1), 22–26. https://doi.org/10.1001/archopht.118.1.22
40. Lee, J. S., Seong, G. J., Kim, C. Y., Lee, S. Y., & Bae, H. W. (2019). Risk factors associated with progressive nerve fiber layer thinning in open-angle glaucoma with mean intraocular pressure below 15 mmHg. Scientific Reports, 9(1), Article 19811. https://doi.org/10.1038/s41598-019-56387-x
41. Leung, C. K., Choi, N., Weinreb, R. N., Liu, S., Ye, C., Liu, L., Lai, G. W., Lau, J., & Lam, D. S. (2010). Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: Pattern of RNFL defects in glaucoma. Ophthalmology, 117(12), 2337–2344. https://doi.org/10.1016/j.ophtha.2010.04.013
42. Braeu, F. A., Chuangsuwanich, T., Tun, T. A., Perera, S. A., Husain, R., Kadziauskienė, A., Schmetterer, L., Thiéry, A. H., Barbastathis, G., & Aung, T., & Girard, M. J. (2023). Three-dimensional structural phenotype of the optic nerve head as a function of glaucoma severity. JAMA Ophthalmology, 141(9), 882–889. https://doi.org/10.1001/jamaophthalmol.2023.3535
43. Gracitelli, C. P. B., Abe, R. Y., & Medeiros, F. A. (2015). Spectral-domain optical coherence tomography for glaucoma diagnosis. The Open Ophthalmology Journal, 9, 68–82. https://doi.org/10.2174/1874364101509010068
44. Moreno-Montañés, J., & Álvarez-Vidal, A. (2002). Retinal nerve fiber layer thickness in glaucomatous eyes: A comparative study between OCT and visual field. Archivos de la Sociedad Española de Oftalmología, 77(8), 435–441.
45. Ashraf, N. N., Siyal, N. A., & Ibrahim, M. (2021). Comparison of quadrantic retinal nerve fiber layer thickness between glaucoma patients and age matched controls. Pakistan Journal of Ophthalmology, 37(3). https://doi.org/10.36351/pjo.v37i3.1199
46. Mariottoni, E. B., Jammal, A. A., Urata, C. N., Berchuck, S. I., Thompson, A. C., Estrela, T., & Medeiros, F. A. (2020). Quantification of retinal nerve fibre layer thickness on optical coherence tomography with a deep learning segmentation-free approach. Scientific Reports, 10(1), Article 402. https://doi.org/10.1038/s41598-019-57196-y
47. Na, J. H., Sung, K. R., Lee, J. R., Lee, K. S., Baek, S., Kim, H. K., & Sohn, Y. H. (2013). Detection of glaucomatous progression by spectral-domain optical coherence tomography. Ophthalmology, 120(7), 1388–1395. https://doi.org/10.1016/j.ophtha.2012.12.014
48. Medeiros, F. A., Zangwill, L. M., Bowd, C., & Weinreb, R. N. (2009). Comparison of the ability of time domain and spectral-domain optical coherence tomography to detect glaucoma progression. Ophthalmology, 116(10), 1858–1865. https://doi.org/10.1016/j.ophtha.2009.02.022
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Eurasian Journal of Scientific and Multidisciplinary Research

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.









