STUDY OF STABILITY IN A FIRST APPROXIMATION

Authors

  • Abubakir Mukhtarovich Djuraev Jalal-Abad State University named after B.Osmonov Author
  • Nurzada Rahmanali kyzy Jalal-Abad State University named after B.Osmonov Author

DOI:

https://doi.org/10.63666/ejsmr.1694-9013.1.I.2025.10

Keywords:

stability, first-approximation methods, linearization, Lyapunov method, dynamic systems

Abstract

This article examines first-approximation methods for studying the stability of dynamic systems. The focus is on two key approaches: the linearization method and the Lyapunov method. The linearization method approximates a nonlinear system near an equilibrium point using its linear model, which significantly simplifies the stability analysis, especially when analytical solutions are available. However, this method is applicable only when the linearized system provides an accurate representation of the original system’s behavior. The Lyapunov method, on the other hand, is a more powerful tool for analyzing stability since it allows stability assessment without explicitly solving the system's equations. This article provides a detailed discussion of the fundamental principles of constructing Lyapunov functions, stability criteria, and examples of their application to various classes of dynamic systems. Additionally, concrete examples are presented to illustrate the practical applications of these methods in mechanics, control theory, and mathematical physics. The limitations of these methods and possible ways to overcome them are also discussed. This article is intended for students, researchers, and specialists working on the stability analysis of dynamic processes in various scientific and engineering fields.

Author Biographies

  • Abubakir Mukhtarovich Djuraev, Jalal-Abad State University named after B.Osmonov

    Professor, Doctor of Physico-Mathematical Sciences

  • Nurzada Rahmanali kyzy , Jalal-Abad State University named after B.Osmonov

    Master student

References

1. Андронов А.А., Витт А.А., Хаакин С.Э. Теория колебаний. — М.: Наука, 1981.

2. Халанай А. Дифференциальные уравнения: устойчивость, осцилляции и асимптотика. — М.: Мир, 1967.

3. Ляпунов А.М. Общая задача об устойчивости движения. — М.: Гостехиздат, 1950.

4. Четаев Н.Г. Устойчивость движения. — М.: Наука, 1962.

5. Владикавказов С.Ю. Методы исследования устойчивости динамических систем. — М.: Физматлит, 2005.

6. Леонтович А.М. Основы теории устойчивости движения. — М.: Гостехиздат, 1948.

7. Кразовский Н.Н. Теория устойчивости движения: современные методы. — М.: Наука, 1978.

Downloads

Published

2025-03-30

How to Cite

STUDY OF STABILITY IN A FIRST APPROXIMATION. (2025). Eurasian Journal of Scientific and Multidisciplinary Research, 1(I), 113-118. https://doi.org/10.63666/ejsmr.1694-9013.1.I.2025.10

Similar Articles

You may also start an advanced similarity search for this article.